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In this assignment, we were asked to design, implement, and evaluate 

a machine learning algorithm, from scratch. The algorithm was to be 

chosen at our discretion, ensuring to ignore k-Nearest Neighbours, 

Naïve Bayes, or trivial algorithms such as ZeroR or 1R. It was 

possible to also create an algorithm from scratch. We were 

encouraged to work in pairs, but having an introverted, asocial 

personality, I decided to forego a partner for this assignment, and 

try to tackle the assignment alone. 

 

As with the previous assignment, I decided to use Python as my 

language of choice. My experience with it trumps all other 

programming languages, and the wide variety of libraries available 

made much of the extraneous programming tasks (mainly reading the 

‘owls.csv’ file (or any .csv file the user might want to evaluate 

the algorithm on), and the random seed generation). Python is simple 

to understand, and quite portable, which allowed me to easily work 

on my assignment wherever I could get access to the internet. It 

also means that reading the code for the algorithm I’ve chosen is 

much easier than a language like Java, R or MATLAB. 

 

I decided to implement the Classification and Regression Tree 

algorithm, or CART algorithm. The CART Algorithm can also be called 

a decision tree algorithm. In its simplest form, the algorithm can 

be represented with a decision tree. There is an input variable for 

a node, and a split in the tree based on whether the binary choice 

is true or false. Below is a simple recreation of the decision tree 

found in the lecture notes.  It is a decision tree for deciding if 

the weather is good enough to play tennis. 



 

 

We can see here that if the outlook data is set to ‘Overcast’, then 

there is a high chance that tennis will be played, so it has a 

terminal node early. If the weather is sunny or rainy, further 

queries must be made from the given dataset, to try and give the 

result more accuracy. 

Because the CART algorithm can be represented as a binary tree, it 

is a very straightforward process to implement it in any programming 

language of choice. Something along the lines of C would have been 

ideal for implementation, as its low-level programming and control 

over the stack and heap would make popping and pushing nodes in a 

binary tree representation easy, but my proficiency with C is low. 

In my implementation, the most important aspect was trying to find 

the proper splitting point for the data to create a proper binary 

tree. The best way I found to implement a choosing method for the 

data was the Gini Impurity. The Gini Impurity is a measure of how 

likely a given data point in the set will be incorrectly labelled.  

A formal definition to find the Gini Impurity is as follows: 



𝐼𝑔(𝑝) =  1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

 

Where J is the number of classes in the data. You can see my python 

implementation of this algorithm in the 

 splitQuality(groups, classes):   

 

function. It’s interesting to note that the above function had the 

possibility of dividing by 0. This had given me some issue during my 

implementation of the algorithm. I had to add an if clause in the 

code to avoid this happening. 

I also needed to implement a stopping criterion for the binary tree. 

There needs to be a ‘cut off’ point when building a binary tree, 

otherwise it will continue indefinitely. The simplest way to 

implement this would be to code in a stopping point. Adding in a 

maximum depth and minimum size for the tree. It’s a simple process 

to design the algorithm to implement those variables. I decided to 

allow the user to customise those variables if they wish, by 

prompting them for input. 

Finally, the last important main task in implementing the CART 

algorithm is making predictions. Up until now, I’ve managed to read 

the data from csv files, split the data and evaluate the splits, and 

create the binary tree to store the data. With the addition of a 

terminal node implemented in the algorithm, I simply added a 

recursive function 

 prediction(node, row):   

 

That runs through the tree, checking if the given node is terminal 

or not. 

With the algorithm coded, I decided to add some rudimentary inputs 

for the user, so that if they wish to test their own files or change 

the random seed to try and get a more accurate score, they can do so 

easily. I designed the algorithm to allow this easily, very little 

(if any) values are hard programmed. 

To test the algorithm, I ran the provided ‘owls.csv’ dataset. Below 

you can find the results to the algorithm running. The accuracy 

score for each fold fluctuates from run to run slightly, but on 

average, each fold stays above 90%, as seen by the mean accuracy 

calculation. Only in rare cases does a fold slip below 90%, as I 



managed to showcase in my screenshot.

 

I wish to test the algorithm on some other datasets, to make sure 

that it could be used elsewhere, and was not just an algorithm 

specifically designed to solve the issue assigned. After all, an 

important aspect in writing code is making sure it can be as robust 

as possible. 

I downloaded a dataset from the machine learning archives of the 

University of California, Irvine (UCI). I decided on a dataset more 

text than numbers. I decided on this classification of posts from a 

blogger1. You can find the algorithm’s results below, but it seemed 

to handle the task quite well, although the results are not as 

reassuring.

 

I wanted to see how the algorithm would handle a larger dataset, 

with more data points, thus meaning more data to handle. I decided 

on this dataset2 from dermatologists on various attributes exhibited 

by their patients. There are 34 separate attributes in this dataset, 

the size of which was reflected in the speed of the algorithm. 

Despite taking a considerably longer time, the results of the 

algorithm are quite accurate, showing an average of 93.89%, which is 

almost as accurate as the ‘owls.csv’ dataset this algorithm was 

designed for.

  

 

 

                                                           
1 http://archive.ics.uci.edu/ml/datasets/BLOGGER 
2 http://archive.ics.uci.edu/ml/datasets/Dermatology 



I also decided to run my algorithm on the ‘autoimmune.csv’ file I 

formatted from the previous assignment. The results are interesting, 

if entirely useless to showcase the algorithm. Even using relatively 

small values for the inputs, the algorithm takes an enormously long 

time to attempt a calculation, and the results are not insightful. I 

felt, however, that the fact the algorithm was so monumentally bad 

for parsing the ‘autoimmune.csv’ file was in & of itself amusing, so 

I decided to include it here.

 

It can, however, be tied into my conclusion of the algorithm. As 

I’ve shown that for relatively small, short datasets, the algorithm 

does its job very efficiently. Once you try to use much larger 

datasets, with higher amounts of data points (and thus, decisions 

the algorithm needs to make), it begins to slow down. This is mainly 

the case when the number of rows that exist are greater than 10, as 

is the case with the ‘autoimmune.csv’ file. It would be wiser to use 

a different, more efficient algorithm in these cases. Provided that 

the dataset is kept relatively small, then this algorithm works 

quite nicely. 

 

Below, you can find a copy of the completed algorithm. I’ve also 

decided to host all files found in a github repo. You can find a 

link to said repo here. 

1. """  
2. CT475 Assignment 3  
3. Python implementation of CART algorithm.  
4.   
5. Name: Taidgh Murray  
6. Student ID: 15315901  
7. Course: 4BS2  
8.   
9.   
10. Create algorithm (Not Knn or NB)  
11. Write own code  
12. No use of libraries for ML implementation  
13. Must use file input (import csv reader)  
14.   
15.   
16. Distinguish between 'BarnOwl', 'SnowyOwl' & 'LongEaredOwl'  
17. Divide into 2/3 training, 1/3 testing  
18. Allow for n fold cross validation  
19. Allow users rudimentary input if at all possible  
20. Comment code for ease of reading, and to explain code decisions  
21.   

https://github.com/tmurray19/CT475-Project


22. The main elements of CART algorithm:  
23.   
24.     Rules for splitting data at a node based on the value of one variable (Gini Impu

rity)  
25.   
26.     Stopping rules for deciding when a branch is terminal and can be split no more (

Values defined by user)  
27.   
28.     A prediction for the target variable in each terminal node  
29.   
30. """   
31.    
32. # For generating random seed (and other psuedorandom numbers)   
33. import random   
34. # For reading CSV files   
35. import csv   
36. # For printing run time at the end   
37. import time   
38.    
39.    
40. # For loading csv files   
41. def csvLoader(f):   
42.     f = open(f, "r")   
43.     l = csv.reader(f)   
44.     data = list(l)   
45.     return data   
46.    
47.    
48. # Randomly (psuedo-

randomly) splits 'data' into 'nFolds' amount and creates lists of said splits   
49. def crossValidationSplit(data, nFolds):   
50.     dataSplit = list()   
51.     # dataCopy variable implemented to avoid messy code   
52.     dataCopy = list(data)   
53.     foldSize = int(len(data)/nFolds)   
54.     for j in range(nFolds):   
55.         fold = list()   
56.         while len(fold)<foldSize:   
57.             index = random.randrange(len(dataCopy))   
58.             fold.append(dataCopy.pop(index))   
59.         dataSplit.append(fold)   
60.     return dataSplit   
61.    
62. # Accuracy percentage calculation - predicted value vs actual value   
63. def accuracyCalculation(predicted, actual):   
64.     correct = 0   
65.     for k in range(len(actual)):   
66.         if actual[k] == predicted [k]:   
67.             correct+=1   
68.     return ( correct / len(actual) ) * 100   
69.    
70. # Evaluates algortihm using the crossValidationSplit function defined above   
71. def algorithmEvaluation(data, algorithm, nFolds, *args):   
72.     folds = crossValidationSplit(data, nFolds)   
73.     score = list()   
74.     for f in folds:   
75.         trainingSet = list(folds)   
76.         trainingSet.remove(f)   
77.         trainingSet = sum(trainingSet, [])   
78.         testingSet = list()   
79.         for row in f:   
80.             rowCopy = list(row)   
81.             testingSet.append(rowCopy)   
82.             rowCopy[-1] = None   
83.         # Calculates predicition score for given algorithm   
84.         pred = algorithm(trainingSet, testingSet, *args)   



85.         act = [row[-1] for row in f]   
86.         accuracy = accuracyCalculation(pred, act)   
87.         score.append(accuracy)   
88.     return score   
89.    
90.    
91. # Calculate the quality of the data splits - Implementation of Gini Impurity   
92. def splitQuality(groups, classes):   
93.     nInstances = sum([len(g) for g in groups])   
94.     splitQuality = 0   
95.     for g in groups:   
96.         size = len(g)   
97.         # Avoids division by 0   
98.         if size == 0:   
99.             continue   
100.         score = 0   
101.         for c in classes:   
102.             p = [row[-1]for row in g].count(c)/size   
103.             score += p*p   
104.         splitQuality += (1-score)* (size/nInstances)   
105.     return splitQuality   
106.    
107. # Splits a dataset based on an attributes   
108. def testingSplit(index, val, data):   
109.     left, right = list(), list()   
110.     for r in data:   
111.         if r[index] < val:   
112.             left.append(r)   
113.         else:   
114.             right.append(r)   
115.     return left, right   
116.    
117. # Select the best split for the data, by calculating the splitQuality of the data s

ets   
118. def getSplit(data):   
119.     c = list(set(row[-1] for row in data))   
120.     splitIndex, splitValue, splitScore, splitGroups = 999, 999, 999, None   
121.     for i in range(len(data[0])-1):   
122.         for row in data:   
123.             # Calls the testingSplit function on the data   
124.             groups = testingSplit(i, row[i], data)   
125.             # Tests the split data for quality   
126.             sQ = splitQuality(groups, c)   
127.             # If the   
128.             if sQ < splitScore:   
129.                 splitIndex, splitValue, splitScore, splitGroups = i, row[i], sQ, gr

oups   
130.     return {'index':splitIndex,'value':splitValue,'groups':splitGroups}   
131.    
132. # Takes the group of rows assigned to a node and returns the most common value in t

he group, used to make predictions   
133. def addToTerminal(group):   
134.     outcome = [row[-1] for row in group]   
135.     return max(set(outcome), key = outcome.count)   
136.    
137. # Create child nodes for the decision tree   
138. def childNode(node, maxDepth, minSize, depth):   
139.     left, right = node['groups']   
140.     del(node['groups'])   
141.    
142.     # If no child nodes exist yet   
143.     if not left or not right:   
144.         node['left'] = node['right'] = addToTerminal(left + right)   
145.         return   
146.    
147.     # If the tree can't get any any larger, but the depht returns a larger value   



148.     if depth >= maxDepth:   
149.         node['left'], node['right'] = addToTerminal(left), addToTerminal(right)   
150.         return   
151.    
152.     # Left child node   
153.     if len(left) <= minSize:   
154.         # If the left node is smaller than the minimum size, its just added to the 

tree   
155.         node['left'] = addToTerminal(left)   
156.     else:   
157.         # Otherwise it calls the getSplit function on itself   
158.         node['left'] = getSplit(left)   
159.         # And recursively calls the function on itself, increasing the depth by 1   
160.         childNode(node['left'], maxDepth, minSize, depth+1)   
161.    
162.     # Right child node   
163.     if len(right) <= minSize:   
164.         node['right'] = addToTerminal(right)   
165.     else:   
166.         node['right'] = getSplit(right)   
167.         childNode(node['right'], maxDepth, minSize, depth+1)   
168.    
169. # Generated initial decision tree   
170. def makeDecisionTree(train, maxDepth, minSize):   
171.     # Starts the tree with the best split of the training data   
172.     root = getSplit(train)   
173.     # Calls childNode function, which will recursively create binary tree from the 

root node   
174.     childNode(root, maxDepth, minSize, 1)   
175.     return root   
176.    
177. # Make prediciton using decision tree   
178. def prediction(node, row):   
179.     # If the index node in the row is smaller than the value node   
180.     if row[node['index']] < node['value']:   
181.         # if the left node is a Python dictionary   
182.         if isinstance(node['left'], dict):   
183.             # Recursively calls the prediction function using the left node and the

 row   
184.             return prediction(node['left'], row)   
185.         else:   
186.             # Otherwise just returns the left node   
187.             return node['left']   
188.    
189.     else:   
190.         if isinstance(node['right'], dict):   
191.             return prediction(node['right'], row)   
192.         else:   
193.             return node['right']   
194.    
195.    
196. # Calling the CART algorithm   
197. def cart(train, test, maxDepth, minSize):   
198.     # Defines a tree using the makeDecisionTree funcion   
199.     tree = makeDecisionTree(train, maxDepth, minSize)   
200.     # Initialises empty list, called 'predictions' to hold predictions   
201.     predictions = list()   
202.     # Fills prediction list with predictions for each row of info in the test data 

  
203.     for row in test:   
204.         p = prediction(tree, row)   
205.         predictions.append(p)   
206.     return predictions   
207.    
208.    
209.    



210. # Allows for some user input, they can chose a different file to be tested, the see
d, and change the amount of folds, the maximum depth, and the minimum size of the tr
ee   

211.    
212.    
213.    
214. # Load data   
215. file = (input("Please enter a file, or leave blank for owls.csv: ") or 'owls.csv') 

  
216. data = csvLoader(file)   
217.    
218. # Set Random seed   
219. seed = (input("Please enter your desired seed, or leave blank for 7: ") or 7)   
220. random.seed(seed)   
221.    
222.    
223. # Evaluate algorithm inputs from user   
224. nFolds = (input("Enter the number of folds you wish to create, or leave blank for d

efault (3):") or 3)   
225. maxDepth = (input("Enter the maximum depth of the tree, or leave blank for default 

(5):") or 5)   
226. minSize = (input("Enter the minumum size of the tree, or leave blank for default (1

0):") or 10)   
227.    
228. nFolds = int(nFolds)   
229. maxDepth = int(maxDepth)   
230. minSize = int(minSize)   
231.    
232. # Record Start Time of prgram   
233. startTime = time.time()   
234.    
235. print('\n')   
236. # CART algorithm   
237. scores = algorithmEvaluation(data, cart, nFolds, maxDepth, minSize)   
238.    
239. # Formats results and shows the classification accuracy for each fold   
240. print('Accuracy scores for each fold: {}'.format(scores))   
241. # Mean accuracy of accuracy score for CART Algorithm   
242. print('Mean Accuracy: %.2f%%' % (sum(scores)/(len(scores))))   
243.    
244. print("--- This calculation took %.2f seconds ---" % (time.time() - startTime))   
245.    
246.    
247. # Users can then read the completed data before closing the program   
248. input()   

 

 

 


