
CT475

Machine Learning &

Data Mining

Assignment 3

Name: Taidgh Murray

Student I.D: 15315901

Discipline: College of Science

Course: 4BS2 Undenominated Science

(Computing)

In this assignment, we were asked to design, implement, and evaluate

a machine learning algorithm, from scratch. The algorithm was to be

chosen at our discretion, ensuring to ignore k-Nearest Neighbours,

Naïve Bayes, or trivial algorithms such as ZeroR or 1R. It was

possible to also create an algorithm from scratch. We were

encouraged to work in pairs, but having an introverted, asocial

personality, I decided to forego a partner for this assignment, and

try to tackle the assignment alone.

As with the previous assignment, I decided to use Python as my

language of choice. My experience with it trumps all other

programming languages, and the wide variety of libraries available

made much of the extraneous programming tasks (mainly reading the

‘owls.csv’ file (or any .csv file the user might want to evaluate

the algorithm on), and the random seed generation). Python is simple

to understand, and quite portable, which allowed me to easily work

on my assignment wherever I could get access to the internet. It

also means that reading the code for the algorithm I’ve chosen is

much easier than a language like Java, R or MATLAB.

I decided to implement the Classification and Regression Tree

algorithm, or CART algorithm. The CART Algorithm can also be called

a decision tree algorithm. In its simplest form, the algorithm can

be represented with a decision tree. There is an input variable for

a node, and a split in the tree based on whether the binary choice

is true or false. Below is a simple recreation of the decision tree

found in the lecture notes. It is a decision tree for deciding if

the weather is good enough to play tennis.

We can see here that if the outlook data is set to ‘Overcast’, then

there is a high chance that tennis will be played, so it has a

terminal node early. If the weather is sunny or rainy, further

queries must be made from the given dataset, to try and give the

result more accuracy.

Because the CART algorithm can be represented as a binary tree, it

is a very straightforward process to implement it in any programming

language of choice. Something along the lines of C would have been

ideal for implementation, as its low-level programming and control

over the stack and heap would make popping and pushing nodes in a

binary tree representation easy, but my proficiency with C is low.

In my implementation, the most important aspect was trying to find

the proper splitting point for the data to create a proper binary

tree. The best way I found to implement a choosing method for the

data was the Gini Impurity. The Gini Impurity is a measure of how

likely a given data point in the set will be incorrectly labelled.

A formal definition to find the Gini Impurity is as follows:

𝐼𝑔(𝑝) = 1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

Where J is the number of classes in the data. You can see my python

implementation of this algorithm in the

 splitQuality(groups, classes):

function. It’s interesting to note that the above function had the

possibility of dividing by 0. This had given me some issue during my

implementation of the algorithm. I had to add an if clause in the

code to avoid this happening.

I also needed to implement a stopping criterion for the binary tree.

There needs to be a ‘cut off’ point when building a binary tree,

otherwise it will continue indefinitely. The simplest way to

implement this would be to code in a stopping point. Adding in a

maximum depth and minimum size for the tree. It’s a simple process

to design the algorithm to implement those variables. I decided to

allow the user to customise those variables if they wish, by

prompting them for input.

Finally, the last important main task in implementing the CART

algorithm is making predictions. Up until now, I’ve managed to read

the data from csv files, split the data and evaluate the splits, and

create the binary tree to store the data. With the addition of a

terminal node implemented in the algorithm, I simply added a

recursive function

 prediction(node, row):

That runs through the tree, checking if the given node is terminal

or not.

With the algorithm coded, I decided to add some rudimentary inputs

for the user, so that if they wish to test their own files or change

the random seed to try and get a more accurate score, they can do so

easily. I designed the algorithm to allow this easily, very little

(if any) values are hard programmed.

To test the algorithm, I ran the provided ‘owls.csv’ dataset. Below

you can find the results to the algorithm running. The accuracy

score for each fold fluctuates from run to run slightly, but on

average, each fold stays above 90%, as seen by the mean accuracy

calculation. Only in rare cases does a fold slip below 90%, as I

managed to showcase in my screenshot.

I wish to test the algorithm on some other datasets, to make sure

that it could be used elsewhere, and was not just an algorithm

specifically designed to solve the issue assigned. After all, an

important aspect in writing code is making sure it can be as robust

as possible.

I downloaded a dataset from the machine learning archives of the

University of California, Irvine (UCI). I decided on a dataset more

text than numbers. I decided on this classification of posts from a

blogger1. You can find the algorithm’s results below, but it seemed

to handle the task quite well, although the results are not as

reassuring.

I wanted to see how the algorithm would handle a larger dataset,

with more data points, thus meaning more data to handle. I decided

on this dataset2 from dermatologists on various attributes exhibited

by their patients. There are 34 separate attributes in this dataset,

the size of which was reflected in the speed of the algorithm.

Despite taking a considerably longer time, the results of the

algorithm are quite accurate, showing an average of 93.89%, which is

almost as accurate as the ‘owls.csv’ dataset this algorithm was

designed for.

1 http://archive.ics.uci.edu/ml/datasets/BLOGGER
2 http://archive.ics.uci.edu/ml/datasets/Dermatology

I also decided to run my algorithm on the ‘autoimmune.csv’ file I

formatted from the previous assignment. The results are interesting,

if entirely useless to showcase the algorithm. Even using relatively

small values for the inputs, the algorithm takes an enormously long

time to attempt a calculation, and the results are not insightful. I

felt, however, that the fact the algorithm was so monumentally bad

for parsing the ‘autoimmune.csv’ file was in & of itself amusing, so

I decided to include it here.

It can, however, be tied into my conclusion of the algorithm. As

I’ve shown that for relatively small, short datasets, the algorithm

does its job very efficiently. Once you try to use much larger

datasets, with higher amounts of data points (and thus, decisions

the algorithm needs to make), it begins to slow down. This is mainly

the case when the number of rows that exist are greater than 10, as

is the case with the ‘autoimmune.csv’ file. It would be wiser to use

a different, more efficient algorithm in these cases. Provided that

the dataset is kept relatively small, then this algorithm works

quite nicely.

Below, you can find a copy of the completed algorithm. I’ve also

decided to host all files found in a github repo. You can find a

link to said repo here.

1. """
2. CT475 Assignment 3
3. Python implementation of CART algorithm.
4.
5. Name: Taidgh Murray
6. Student ID: 15315901
7. Course: 4BS2
8.
9.
10. Create algorithm (Not Knn or NB)
11. Write own code
12. No use of libraries for ML implementation
13. Must use file input (import csv reader)
14.
15.
16. Distinguish between 'BarnOwl', 'SnowyOwl' & 'LongEaredOwl'
17. Divide into 2/3 training, 1/3 testing
18. Allow for n fold cross validation
19. Allow users rudimentary input if at all possible
20. Comment code for ease of reading, and to explain code decisions
21.

https://github.com/tmurray19/CT475-Project

22. The main elements of CART algorithm:
23.
24. Rules for splitting data at a node based on the value of one variable (Gini Impu

rity)
25.
26. Stopping rules for deciding when a branch is terminal and can be split no more (

Values defined by user)
27.
28. A prediction for the target variable in each terminal node
29.
30. """
31.
32. # For generating random seed (and other psuedorandom numbers)
33. import random
34. # For reading CSV files
35. import csv
36. # For printing run time at the end
37. import time
38.
39.
40. # For loading csv files
41. def csvLoader(f):
42. f = open(f, "r")
43. l = csv.reader(f)
44. data = list(l)
45. return data
46.
47.
48. # Randomly (psuedo-

randomly) splits 'data' into 'nFolds' amount and creates lists of said splits
49. def crossValidationSplit(data, nFolds):
50. dataSplit = list()
51. # dataCopy variable implemented to avoid messy code
52. dataCopy = list(data)
53. foldSize = int(len(data)/nFolds)
54. for j in range(nFolds):
55. fold = list()
56. while len(fold)<foldSize:
57. index = random.randrange(len(dataCopy))
58. fold.append(dataCopy.pop(index))
59. dataSplit.append(fold)
60. return dataSplit
61.
62. # Accuracy percentage calculation - predicted value vs actual value
63. def accuracyCalculation(predicted, actual):
64. correct = 0
65. for k in range(len(actual)):
66. if actual[k] == predicted [k]:
67. correct+=1
68. return (correct / len(actual)) * 100
69.
70. # Evaluates algortihm using the crossValidationSplit function defined above
71. def algorithmEvaluation(data, algorithm, nFolds, *args):
72. folds = crossValidationSplit(data, nFolds)
73. score = list()
74. for f in folds:
75. trainingSet = list(folds)
76. trainingSet.remove(f)
77. trainingSet = sum(trainingSet, [])
78. testingSet = list()
79. for row in f:
80. rowCopy = list(row)
81. testingSet.append(rowCopy)
82. rowCopy[-1] = None
83. # Calculates predicition score for given algorithm
84. pred = algorithm(trainingSet, testingSet, *args)

85. act = [row[-1] for row in f]
86. accuracy = accuracyCalculation(pred, act)
87. score.append(accuracy)
88. return score
89.
90.
91. # Calculate the quality of the data splits - Implementation of Gini Impurity
92. def splitQuality(groups, classes):
93. nInstances = sum([len(g) for g in groups])
94. splitQuality = 0
95. for g in groups:
96. size = len(g)
97. # Avoids division by 0
98. if size == 0:
99. continue
100. score = 0
101. for c in classes:
102. p = [row[-1]for row in g].count(c)/size
103. score += p*p
104. splitQuality += (1-score)* (size/nInstances)
105. return splitQuality
106.
107. # Splits a dataset based on an attributes
108. def testingSplit(index, val, data):
109. left, right = list(), list()
110. for r in data:
111. if r[index] < val:
112. left.append(r)
113. else:
114. right.append(r)
115. return left, right
116.
117. # Select the best split for the data, by calculating the splitQuality of the data s

ets
118. def getSplit(data):
119. c = list(set(row[-1] for row in data))
120. splitIndex, splitValue, splitScore, splitGroups = 999, 999, 999, None
121. for i in range(len(data[0])-1):
122. for row in data:
123. # Calls the testingSplit function on the data
124. groups = testingSplit(i, row[i], data)
125. # Tests the split data for quality
126. sQ = splitQuality(groups, c)
127. # If the
128. if sQ < splitScore:
129. splitIndex, splitValue, splitScore, splitGroups = i, row[i], sQ, gr

oups
130. return {'index':splitIndex,'value':splitValue,'groups':splitGroups}
131.
132. # Takes the group of rows assigned to a node and returns the most common value in t

he group, used to make predictions
133. def addToTerminal(group):
134. outcome = [row[-1] for row in group]
135. return max(set(outcome), key = outcome.count)
136.
137. # Create child nodes for the decision tree
138. def childNode(node, maxDepth, minSize, depth):
139. left, right = node['groups']
140. del(node['groups'])
141.
142. # If no child nodes exist yet
143. if not left or not right:
144. node['left'] = node['right'] = addToTerminal(left + right)
145. return
146.
147. # If the tree can't get any any larger, but the depht returns a larger value

148. if depth >= maxDepth:
149. node['left'], node['right'] = addToTerminal(left), addToTerminal(right)
150. return
151.
152. # Left child node
153. if len(left) <= minSize:
154. # If the left node is smaller than the minimum size, its just added to the

tree
155. node['left'] = addToTerminal(left)
156. else:
157. # Otherwise it calls the getSplit function on itself
158. node['left'] = getSplit(left)
159. # And recursively calls the function on itself, increasing the depth by 1
160. childNode(node['left'], maxDepth, minSize, depth+1)
161.
162. # Right child node
163. if len(right) <= minSize:
164. node['right'] = addToTerminal(right)
165. else:
166. node['right'] = getSplit(right)
167. childNode(node['right'], maxDepth, minSize, depth+1)
168.
169. # Generated initial decision tree
170. def makeDecisionTree(train, maxDepth, minSize):
171. # Starts the tree with the best split of the training data
172. root = getSplit(train)
173. # Calls childNode function, which will recursively create binary tree from the

root node
174. childNode(root, maxDepth, minSize, 1)
175. return root
176.
177. # Make prediciton using decision tree
178. def prediction(node, row):
179. # If the index node in the row is smaller than the value node
180. if row[node['index']] < node['value']:
181. # if the left node is a Python dictionary
182. if isinstance(node['left'], dict):
183. # Recursively calls the prediction function using the left node and the

 row
184. return prediction(node['left'], row)
185. else:
186. # Otherwise just returns the left node
187. return node['left']
188.
189. else:
190. if isinstance(node['right'], dict):
191. return prediction(node['right'], row)
192. else:
193. return node['right']
194.
195.
196. # Calling the CART algorithm
197. def cart(train, test, maxDepth, minSize):
198. # Defines a tree using the makeDecisionTree funcion
199. tree = makeDecisionTree(train, maxDepth, minSize)
200. # Initialises empty list, called 'predictions' to hold predictions
201. predictions = list()
202. # Fills prediction list with predictions for each row of info in the test data

203. for row in test:
204. p = prediction(tree, row)
205. predictions.append(p)
206. return predictions
207.
208.
209.

210. # Allows for some user input, they can chose a different file to be tested, the see
d, and change the amount of folds, the maximum depth, and the minimum size of the tr
ee

211.
212.
213.
214. # Load data
215. file = (input("Please enter a file, or leave blank for owls.csv: ") or 'owls.csv')

216. data = csvLoader(file)
217.
218. # Set Random seed
219. seed = (input("Please enter your desired seed, or leave blank for 7: ") or 7)
220. random.seed(seed)
221.
222.
223. # Evaluate algorithm inputs from user
224. nFolds = (input("Enter the number of folds you wish to create, or leave blank for d

efault (3):") or 3)
225. maxDepth = (input("Enter the maximum depth of the tree, or leave blank for default

(5):") or 5)
226. minSize = (input("Enter the minumum size of the tree, or leave blank for default (1

0):") or 10)
227.
228. nFolds = int(nFolds)
229. maxDepth = int(maxDepth)
230. minSize = int(minSize)
231.
232. # Record Start Time of prgram
233. startTime = time.time()
234.
235. print('\n')
236. # CART algorithm
237. scores = algorithmEvaluation(data, cart, nFolds, maxDepth, minSize)
238.
239. # Formats results and shows the classification accuracy for each fold
240. print('Accuracy scores for each fold: {}'.format(scores))
241. # Mean accuracy of accuracy score for CART Algorithm
242. print('Mean Accuracy: %.2f%%' % (sum(scores)/(len(scores))))
243.
244. print("--- This calculation took %.2f seconds ---" % (time.time() - startTime))
245.
246.
247. # Users can then read the completed data before closing the program
248. input()

